
XCPU

A N e w , 9 P - b a s e d
F r a m e w o r k f o r C l u s t e r

M a n a g e m e n t

l a t c h e s a r I o n k o v
A n d r e y M i r t c h o v s k i

L o s A l a m o s N a t i o n a l L a b o r a t o r y

{ l i o n k o v , a n d r e y } @ l a n l . g o v

Contents
Introduction

A brief discussion of clustering

XCPU:

Goals

Design

Implementation

Performance

Examples

Introduction

HPC: an inseparable part of scientific progress

A recent design at LANL was deemed
“computationally light” because it used only 1%
of LANL’s computing capability during the
past two years

Top 500: 72% clusters (vs 0% ten years ago)

So, what are clusters?

A Brief History of
Clusters (sort of)

A Single Node has:

OS

Storage

Daemons

Noise

Node

OS Storage

ABHOC
(cont’d)

A Set of Nodes (usually has):

Identical OS

Network

FS

More Noise

Node Node Node

Interconnect

The Head Node

The Head Node

Usually same OS

Usually same network

Allows connections from
remote machines (desktops)

Has all necessary information
about the cluster

Controller
(head node)

Node Node Node

Desktop Desktop Desktop

The File Server

Massive amounts of
storage

Somehow must be
delivered on-demand to the
end nodes

Scalable?

Controller
(head node)

Node Node Node

File
Server

Desktop Desktop Desktop

The File Server
(in detail)

Use caching to
distribute the data

But what about writes?

FS
Cache Cache Cache

Node
Node

Node
Node

Node
Node

Node
Node

Node
Node

Node
Node

A Cluster:

Controller
(head node)

Node Node Node

Interconnect

File Server

Cache Cache Cache

Desktop Desktop Desktop

And Finally: Sets Of
Clusters...

“Billions and Billions”

LANL has at least 5 operating at the same time

Desktop Desktop Desktop

Now To Drive The
Whole Thing

Scheduler

Job Starter

Accounting

Authentication

Resource Discovery

...

Problems:

Speed

Speed

Speed

How high can we score on the Top 500?

Factors which impact performance:

Hardware

Software

Problems
(cont’d):

10 years ago there were no clusters in the Top
500 list

5 years ago 70% of the machines (including
clusters, MPP and constellations) had fewer
than 256 processors

Now: 91% of the Top 500 list have 512 or more
processors

How fast has software moved in the past 5
years?

What We’ve Seen

There is room for improvement on the software
side of things

Simple systems ultimately perform better than
more complex ones (and are easier to
administer)

If it works well people will keep using it
(provided it performs well)

Simplicity: not necessarily the number of
elements involved, but how they interact

Enter XCPU

A novel cluster management system

Designed with simplicity as the underlying
paradigm

Aims to replace a very successful cluster
framework: B-Proc

Aims to extend beyond the single system image
to clusters of arbitrary configurations

Goals

Scalability: thousands of nodes

Heterogeneity: OS-independent, hardware-
independent

Flexibility: no restriction of the form and design
of the cluster

Performance: b-proc is the fastest system we
know. XCPU should match it within a factor of
five (16mb image over 1024 nodes in < 20
seconds)

Goals (cont’d)

No head nodes
Disconnected operation
Ability to resume sessions

Starting point:
What type of resource are we most successful in
sharing today?

Design

Split in Two: Clients and Servers

Servers serve (synthetic or real) files

Clients use standard file operations to access
them

Mounted or directly connected to over a/any
network

Servers
Provide a location to store binaries and input
files
Control application execution (start/stop/
checkpoint)
Federate input/output from/to clients
Able to act as clients when tree-spawn
execution is required
Mountable (via v9fs) by any machine with
permissions to do so
Speed: 16MB binary copied and executed to
1024 nodes in 3 seconds (our current best is 6)

Clients

Connect to one or more servers

Create sessions

Copy binary/input files/arguments

Locate and copy additional libraries if
necessary

Federate input/output to/from servers

Unexpected bonus: allow pipes to be executed
across clusters!
#!/bin/bash\nexec $*\nexit 1\n
xrx -a tar zxf - < somefile.tgz

The XCPU
Environment

The XCPU
environment (cont’d)

/mnt/xcpu/

cluster1/

node1/

session1/

cluster2/

node1/

session1/

...

node2/

...

cluster3/

node1/

session1/

File Hierarchy

Top Level:

arch
clone
env
procs
state
auth

File Hierarchy
Session Directory
argv
ctl
exec
env
fs
state
stdin
stdout
stderr
stdio
wait
id

Example
$ mount -t 9p 192.168.100.101 /mnt/xcpu/1 -o port=6666
$ cd /mnt/xcpu/1
$ ls -l
-r--r--r-- 1 root root 0 Jul 25 10:19 arch
-r--r--r-- 1 root root 0 Jul 25 10:19 clone
-rw-r--r-- 1 root root 0 Jul 25 10:19 env
-r--r--r-- 1 root root 0 Jul 25 10:19 procs
-r--r--r-- 1 root root 0 Jul 25 10:19 state
$ tail -f clone &
1234
$ ls -ld 1234
-r--r--r-- 1 andrey root 0 Jul 25 10:19 1234
$ cd 1234
$ ls -l
-rw-rw---- 1 andrey root 0 Jul 25 12:58 argv
-rw-rw---- 1 andrey root 0 Jul 25 12:58 ctl
-rw-rw---- 1 andrey root 0 Jul 25 12:58 env
drwx------ 1 andrey root 0 Jul 25 12:58 fs
-r--r--r-- 1 andrey root 0 Jul 25 12:58 stderr
-rw-rw---- 1 andrey root 0 Jul 25 12:58 stdin
-rw-rw---- 1 andrey root 0 Jul 25 12:58 stdio
-r--r--r-- 1 andrey root 0 Jul 25 12:58 stdout
-rw-rw---- 1 andrey root 0 Jul 25 12:58 wait
$ cp /bin/date fs
$ echo exec date > ctl
$ cat stdout
Tue Jul 25 12:59:11 MDT 2006
$

Security

Public/Private Key

Identity vs TLS

The Lamentable Introduction of an
Administrative Account

Monitoring: Statfs

Another file server

Also a client

Pings XCPU nodes periodically (with an
adjustable frequency)

Used by clients when they want to execute a
job on all nodes without having to know where
they are

Basic FIFO scheduling

Scheduling

We don’t want to do scheduling, there are many
other systems that can do it for us much better

Maui/Torque integration

LSF (?)

PBS

Scheduling across administrative domains?

Implementation

OS Independent

Language Independent

Current implementation written in C using
standard, POSIX-compliant code (no GNU-
isms)

Plan 9 & 9P

“Everything is a file”

network (/tcp)

Source of our protocol: 9P

Robust

Portable

Works over all kinds of connections (tcp/rudp/
ib/cell’s dma)

Scalable

9P

Version Auth

Error Flush

Attach Walk

Open Create

Read Write

Clunk Remove

Stat Wstat

Code

~20k SLOC

Includes all libraries + client, server and
monitoring code

Libraries allow new file servers and clients to
be created very easy (100 lines of code gives
you a fully functional mountable client)

Portability

Anything with a socket :)

Linux

*BSD

Darwin

Most if not all portability issues arise from
different representations of system resources
/proc is the best example

Future

Interface to debuggers?

Fully integrated resource discovery?

Monitoring and control

Resilience?

Thank You!

http://xcpu.org

http://xcpu.org
http://xcpu.org

