
; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 5

A N D R E Y M I R T C H O V S K I A N D
L A T C H E S A R I O N K O V

why some dead
OSes still matter
AndreyMirtchovski has been a Plan 9 aficionado
since, as an undergraduate student, he found Plan 9’s
Third Release disks hidden in the waste bin of a uni-
versity server room. Since then he has devoted a sig-
nificant amount of time to the system,because it
simply gets things donewith less code.

andrey@lanl.gov

Latchesar Ionkov is a Linux kernel developer responsi-
ble in part for the 9p kernel module,which allows Lin-
ux to speak Plan 9’s 9p protocol. Latchesar has been
instrumental in translating Plan 9’s ideas intomain-
line operating systems such as Linux.

lionkov@lanl.gov

WI TH I T S CU R R EN T LY U NCHA L L E NG ED
ubiquity, the Linux operating system has be-
come the de facto standard research OS in
academia.The consequent waning of gener-
al systems research has been well docu-
mented [2],with the number of alternative
operating systems in existence that signifi-
cantly depart from the UNIX model and
that are actively in development rapidly ap-
proaching zero. In this article we will discuss
one such alternative operating system that
has refused to disappear completely, and we
will attempt to evaluate the features of that
OS that make it suitable as a vehicle in our
research projects and as a research environ-
ment.

We describe and share our experience working
with the “Plan 9 from Bell Labs” operating system.
This article will not attempt to compare the virtues
of this OS with other, well-established systems. In-
stead, we will examine the environment Plan 9
provides as it pertains to researchers in academia,
graduate students, and even undergraduates taking
their first steps in exploring the inner workings of
their first operating system. The goals of Plan 9 are
completely different from those of other free and
open source operating systems: Whereas some aim
to provide a useful UNIX environment and others
are bent on total world domination, Plan 9 aims to
provide a useful research environment for building
distributed software.

Plan 9 from Bell Labs

Plan 9 is a not-so-fresh offering from the same
group at Bell Laboratories that created UNIX. Plan
9 has been in existence for over 18 years, making it
a tad older than the popular free UNIX variants.
The first Plan 9 papers were published in 1990 and
since then there has been a relatively steady stream
of research publications using the OS as their base
[1]. Both the OS and its ideas are active parts in
several current research projects, ranging from
porting it to the largest supercomputer currently in
existence to fitting it into small embedded devices
that can be carried in one’s pockets.

During most of its existence the OS has flourished
within the confines of the lab it was created in, tak-
ing part as the core of most of the research projects
therein. Outside of Bell Labs, however, Plan 9 has

failed to gain widespread adoption. The reasons for this are several and can
mostly be traced to the battle for open source software that raged through-
out the 1990s. The first Plan 9 release was made available to a select few uni-
versities in 1990. A second release, made available in 1995, required exter-
nal organizations and individuals to purchase the OS and manuals at the
prohibitively high cost of $350 for a binary-only license. In 2000, Plan 9
marked its third release, this time as an open source operating system pro-
vided by its creators with all source code and at no cost. (Manuals can still
be purchased separately from Vita Nuova [5], a company in Great Britain
that maintains and distributes the Inferno OS, a cousin of Plan 9.) Unfortu-
nately, the license Plan 9 was released under was slightly restrictive, for ex-
ample requiring users to indemnify the new Bell Labs owner, Lucent, from
any future lawsuits. As expected, this ruffled a few feathers in the free/open
source camp (see Richard Stallman’s article describing the issues with the li-
cense of the OS [3]). The license was completely opened and OSI-approved
by 2002, for the fourth release of Plan 9. Since then the system has moved
from a single release cycle to a continuous-update one, where changes to the
OS and supporting applications are made available immediately, so the OS
release number has not been bumped, even though the system is still being
developed.

In many aspects the Plan 9 operating system was ahead of its time. Its cre-
ators anticipated the level of penetration that networks will have in comput-
ing and aimed to create a distributed environment that provided services to
programs and end users regardless of their physical location as long as they
were connected to the network.

PLAN 9 IS STI LL RELEVANT

Even though Plan 9 has existed for nearly two decades, it still holds some
relevance for today’s operating system landscape. Plan 9 was innovative in
many areas and integrated novel and interesting solutions deeply within the
system, but its relevance does not necessarily stem from the fact that it’s
such a great OS: It is not. Other OSes that came into being about the same
time, such as Amoeba [4], were making even greater leaps into the wild,
containing a multitude of ideas, many of which—such as independent-of-
origin computation, resource pooling, and virtualization—are now becom-
ing much more relevant to computing. Perhaps that very boldness in accept-
ing new concepts in the OS made those systems less practical; most of them
have died from lack of developers and fresh users. Plan 9’s fate is sure to be
the same, as it has a relatively stable community of around several hundred
users, but no new blood is coming in—which is exactly the rationale for this
article.

Impracticality should be an accepted death sentence for every bold new op-
erating system. What is troublesome, however, is that all the ideas coming
from this vast research in distributed operating systems in the early 1990s
have been lost to the new generation of programmers, students, and re-
searchers. Students now entering the system software research and develop-
ment field are faced with the same pool of choices now as they were 20 years
ago: The choice is always among various UNIX offshoots. In fact, for many
undergraduates the deciding factor as to which operating system they will
dedicate their best years has been political, rather than technical: They pick
from the set of free and open source operating systems the one that most
closely matches their moral beliefs. The gap in operating systems and sys-
tem software that was supposed to be filled by all that research in the last
decade before the millennium has been filled by bloated middleware.

6 ; LOG I N : VO L . 3 2 , NO . 5

Plan 9 managed not to be involved in this political game. It came from an
older time when source was closed and, when it had to, it successfully con-
verted, with a few hiccups, to an open model allowing everybody to peruse
its code as they see fit. What is keeping Plan 9 alive is those users who keep
an open eye for problems and an open mind about their solutions. The rea-
son Plan 9 is still relevant even after its user base has dwindled is that the
main purpose for its existence is to explore and to examine problems and
solutions in a networked, distributed environment. We can do so easily and
without much effort because Plan 9 was built on three basic design princi-
ples that cohesively absorb and tie various parts of the system together: sim-
plicity, clarity, and generality.

Simplicity

The initial goal with which Plan 9’s creators set out to develop the system
was to fix the problems that they perceived were inherent in UNIX. The
main task they had to tackle was to simplify the system by peeling off all the
communication layers that had been built on top of the core to handle tasks
never envisioned by its creators, such as networking (sockets) or graphical
user interfaces (X11). Plan 9 presents the programmer with a single protocol
upon which all remote and local communication is based: 9p. The 9p proto-
col allows resources presented by processes locally or remotely to be ac-
cessed as a hierarchy of files and directories (which themselves are files)
with a few standard operations such as open, close, read, write, and stat. The
9p protocol permeates the system fully, with absolutely all communication
except memory access occurring over it.

Besides the fact that 9p allows clients and servers to share resources via a
very simple but effective protocol, 9p has an extra feature that makes it very
appealing to use: It is not transport-dependent. Plan 9 uses the protocol over
TCP, IL, a protocol created by Bell Labs with 9p in mind and without TCP’s
overhead, and RUDP, a reliable UDP offshoot with in-order delivery. In our
work here at LANL we have also written libraries that allow 9p to be trans-
mitted directly over the DMA mechanisms available in the Cell for commu-
nication between its separate processor elements. We are currently working
on a library that allows 9p to be spoken over the PCI-express bus in our
next-generation hybrid supercomputer, which combines Cell accelerator
cards with Opteron hosts.

We must mention that, apart from the simple communication protocol, the
rest of the Plan 9 system is also an exercise in simplicity, in both the number
of lines of code and the number of programs used to accomplish a task. The
Plan 9 kernel for the PC architecture (by far the most used and most devel-
oped) consists of around 90,000 lines of C code, not counting the drivers for
various hardware, plus another 20,000 lines of portable C code, which is
shared among all architectures.

Given that this code is both readable and understandable, it comes as no
surprise that new students are able to pick up Plan 9 rather quickly. Unfor-
tunately, some students, particularly the ones already familiar with other
free and open source operating systems, have expressed distaste for such a
simple system. In our experience, undergraduate students tend to be more
impressed by, even enamored with, graphical bells and whistles and are un-
able to give the system’s simple design proper consideration. Indeed, most
will consider a windowing system implemented in only 7000 lines of code
spartan. What those students miss is that Plan 9’s creators eschewed com-
plexity, which left us with a system that is both easy to understand and easy
to modify.

; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 7

Clarity

The main method of interfacing with other programs is through files. A
client program opens a file served by a process and reads to receive informa-
tion or writes to send information. Plan 9 does not have an equivalent to the
ioctl() system call, which cannot be issued across a network owing to the re-
liance on a local pointer to pass data. Instead, most servers by convention
serve a file named ctl at the top of their hierarchy, which allows clients to
control not only I/O but the general behavior of the servers.

The power of this method of exposed interfaces is enormous, as witnessed
by the following examples, which illustrate how Plan 9’s simple concepts are
tied together into a cohesive environment.

The familiar concept of a UNIX pipe (i.e., a communication path linking a
reader and a writer) is implemented in Plan 9 via a file server: A kernel de-
vice serves a single-level tree containing two files, data and data1. Writes to
data can be read from data1 and vice versa. Moreover, those two files can be
bound anywhere in one’s namespace and even imported from a remote sys-
tem, removing the need for a special tool such as netcat.

Networking in Plan 9 is also implemented as a file server, or, rather, several
different file servers, each corresponding to a specific protocol. Those file
servers are mounted together in /net on a system, and each may serve one or
more subdirectories for each connection to a remote machine. Because Plan
9 directory structures can be served remotely and mounted on a remote ma-
chine (as the next section illustrates), a /net from one server can be used as
the main interface of another. Since most networks nowadays are heteroge-
neous, this concept has mostly been used to provide access to the outside
world to machines hidden on an internal network. One computer will have
two interfaces—an internal one and an external one—with all machines on
the inside that need access to the Internet mounting its external /net. Thus
there is no need for specialized NAT software and packet translation. There
are no extra provisions made to allow one machine to use another’s network
stack; instead, this ability simply comes from the fact that network stack in-
terfaces are presented as files and that files can be imported from remote
computers.

An extension of this idea is a small program called sshnet, which can be
used to import a remote computer’s network interface via a connection se-
cured and encrypted by the SSH protocol. Sshnet imports the remote ma-
chine’s TCP stack and presents it to the local system as a network stack like
all others in /net.

The window managers and graphics subsystem in Plan 9 are also file servers.
The window manager, rio, presents its control and communication interface
in /dev. Those files correspond to the copy/paste buffer (a text file called
snarf) and the whole screen of the display, as well as subdirectories contain-
ing information about each window on the system, including the text typed
in and, indeed, the graphical representation of the window. To take a screen-
shot of one’s desktop, one would simply have to cat /dev/screen. Since
they’re all simply files, naturally one can import another computer’s window
manager files and have local programs draw on a remote screen without any
additional software requirements or tweaks. Furthermore, since they are all
simply files, the window manager can be run recursively in one of its own
windows.

Another example of the benefits of using files is the copy/paste buffer served
by the Plan 9 window manager: It is a simple text file that acts as a buffer for

8 ; LOG I N : VO L . 3 2 , NO . 5

text, keeping whatever is written to it for all readers. Naturally, to communi-
cate with a more sophisticated operating system, this file is not enough. For
example, when running Plan 9 under the Parallels virtual machine emulator
on OS X, one is unable to have text copied on the host system be pasted in
Plan 9. One ingenious solution to this problem is to export the host system’s
copy/paste interface as a file, which can be imported by Plan 9 and mounted
on top of the file served by the window manager, thus being made available
to all programs running within that namespace. The program to complete
all this is a simple 100-liner in C which speaks the 9p protocol on a TCP/IP
socket and knows how to query and set the copy/paste buffer in OS X. It
serves a single root directory with a single file in it, replacing the Plan 9 win-
dow manager with the OS X one. This has proved much easier than having
to create special hooks within both Plan 9 and Parallels to create an internal
interface to the copy/paste buffer hidden from the eyes of user-level pro-
grams.

Generality

In Plan 9 every resource of a system, be it hardware or software, is presented
as a hierarchy of files. The system provides two means of manipulating hier-
archies: mounting a resource and binding two mounted resources together.
These two functions are designed to improve and extend the ability of a Plan
9 user to construct a namespace (or the set of file hierarchies) relative only
to the user’s own interests and uses. In other words, a private view of what is
available on the system (or networks of systems) is available to be cus-
tomized by individual user-level processes on the fly.

Mounting carries the same functionality as it does on UNIX systems and
their descendants: A connection with a local or remote resource is initiated,
the resource is attached to the issuer’s namespace (the directory hierarchy
starting at root), and standard file operations pertaining to the mounted di-
rectory are sent over the connection to the server. In Plan 9, however, a
mount can be accomplished by anyone without requiring superuser privi-
leges and without affecting the file hierarchy of other users. This allows, as
will be shown later, a user to import a remote server’s network interface (à la
VPN) in one terminal on their desktop without affecting any other users on
the system or even programs running in other windows on the same desk-
top. Importing a remotely served file system is trivial: A connection is made
to the remote system, and the file descriptor from that connection is mount-
ed locally. The 9p protocol is designed to handle authentication security
transparently to all programs accessing resources on the system.

Binding in Plan 9 is the ability to join two or more directories together in the
same hierarchy. This does not have a direct analog in UNIX, but it has
turned out to be very useful in Plan 9. It allows one, for example, to build a
source tree in a directory that does not allow the user to write to it, without
having to copy it to a temporary place. In another example, Plan 9 has only
a single directory for binaries, called /bin. When a user logs in, all binaries
for the particular architecture that he or she is using, all scripts (global and
local for that user), and all binaries that the user has installed privately are
bound to /bin. The shell’s equivalent of $PATH in Plan 9 contains only a sin-
gle directory, /bin (see Figure 1).

; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 9

F I G U R E 1 : T H E V A R I O U S D I R E C T O R I E S C O R R E S P O N D I N G T O T H E
PA R T I C U L A R A R C H I T E C T U R E (I N T H I S C A S E , X 8 6) , S H E L L
S C R I P T S (R C) , A N D B I N A R I E S C O M P I L E D L O C A L LY B Y T H E U S E R
A R E B O U N D T O G E T H E R I N A U N I O N D I R E C T O R Y I N T H E O T H E R -
W I S E E M P T Y / B I N , T H E O N LY D I R E C T O R Y T H AT T H E S H E L L
T R A V E R S E S I N I T S P A T H T O F I N D B I N A R I E S O N P L A N 9 .

Perhaps the most striking example of the generality of Plan 9’s ideas and
how they tie together is the cpu command, which is used to connect to re-
mote Plan 9 servers. We are used to thinking about such programs as gate-
ways to remote machines. For example, when we ssh to a server we throw
away everything on the local machine and accept the remote environment as
our own. (The hack to tunnel X11 communications through SSH connec-
tions is the exception that proves the rule.) Plan 9’s cpu command, however,
makes it possible to connect not only two ports but two environments on
two separate machines together. cpu serves the local namespace of the ma-
chine from which it was started under a directory (/mnt/term) on the remote
machine. Since everything in plan 9 is a file, from there a script can auto-
matically bind important files from the local system to where they should be
expected by applications on the remote one. For example, the audio device
is bound from /mnt/term/dev to /dev to allow any remote application to play
audio to the local speakers. The same thing happens with the mouse and
keyboard files and the graphical subsystem; thus any application run on the
remote machine can draw to the local one. You can imagine this being ex-
tended for all devices: Via a simple one-line user command requiring no su-
peruser privileges, one can, for example, print from any machine to a local
printer.

As a consequence, Plan 9 system administrators do not set accounts and
modify access lists for applications; instead, they modify file permissions,
fully aware that if a user has permission to access a particular resource on a
local system, that user can do so from any other computer that can connect
to it.

EXAMPLES OF PLAN 9 IN THE REAL WORLD

The ideas stemming from Plan 9—namely, that all resources should be made
available as files that can be accessed remotely by attaching them (or mount-

10 ; LOG I N : VO L . 3 2 , NO . 5

ing, which is the more widely accepted term) to a user or to a process’s
namespace—have been put in use in various forms here at the Los Alamos
National Laboratory’s Advanced Computing Lab and elsewhere. Once one
becomes acquainted with the system’s simplicity and, dare I say, beauty, it is
not very hard to convert ideas to fit the Plan 9 model of development. This
has saved us a tremendous amount of time in developing and testing new
protocols, implementing clients and servers, measuring performance, and
scaling. The fact that we have based our tool on Plan 9’s ideas, but have not
directly used Plan 9 in some of the cases, is another benefit of Plan 9’s design
ideas and their flexibility: One need not port the entire OS but only one ba-
sic element, the protocol, to allow one to benefit fully from the research that
went into the system. In all cases Plan 9’s ideas have given us the ability to
rethink from the ground up the basic ideas and principles on which our
software was based, redesign it in a new model, and implement something
that, if not much faster than its predecessor, was much simpler to under-
stand and fix. Plan 9, in this case, served only as the “mind expansion”
enzyme to further our work.

Some of our work, which is strongly based on Plan 9’s ideas, includes:

� Xcpu: a job starter for extreme scale clusters. We created Xcpu at
LANL in order to be able to start and control jobs on the next genera-
tion of high-performance computing platforms, which are starting to
appear on the horizon. These machines will consists of tens of thou-
sands of heterogeneous nodes. Xcpu presents a file server interface to
starting jobs on a remote machine. This interface includes a directory
for copying binary and data files; control files for starting, stopping,
and continuing an application; and control files for attaching the appli-
cation to its standard I/O and monitoring its progress remotely.

� CellFS: a new programming model for the Cell Broadband Engine
which allows its accelerated components (also known as SPE units)
to communicate with the host processor and its memory via POSIX-
like file-based operations. Since DMA transfers to the host processor
are encapsulated in 9p, the programmer simply issues an open request
via a library call to access and a read request to fetch data from main
memory.

� KvmFS: via 9p, provides extended access, startup, and control of virtu-
al machines running on compute nodes across the cluster. Again, using
a simple set of file operations, administrators can set up a virtual ma-
chine, transfer its image to a node on the network, start it up, and con-
trol its execution (including migrating it to a third node over the net-
work).

There are numerous other toy programs and prototypes in which we have
found the 9p protocol and the Plan 9 way of thinking, “everything is a file,”
to be of great help in simplifying and breaking down the problem space into
its components. We believe now that the ideas we have learned from Plan 9
are applicable in wide areas of our research.

Conclusions

We are not trying to make the argument that Plan 9 should be considered by
any and all academic researchers and students for their work. However, by
listing here the ideas of Plan 9, we hope to invite students and operating sys-
tems programmers to keep an open eye for ideas and implementations. By
showing what is possible with a little imagination and creativity, we de-
scribed a system that will not be easy to conceive with ideas coming from

; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 11

the single-track mind of the successful, but antiquated, creations in the “real
world.” We invite students and professors to look around and dig deep into
the history of operating systems, especially the ones that never became com-
mercial successes because they were “too far out there.” There is a great deal
of research that went into new operating systems before the world got
locked into commercialization, Plan 9 being only one such example, but
without examining and evaluating those, we’re bound to continue making
one mistake over and over: that of complexity. By building layer upon layer
of interfaces designed to hide and sidestep the shortcomings of the underly-
ing system, we are putting ourselves into the corner of incremental research,
where our goal becomes that of improving what’s already there instead of
throwing it away and replacing it with something better, guided by our ex-
perience and the ideas of others.

REFERENCES

[1] Plan 9 from Bell-Labs papers: http://plan9.bell-labs.com/sys/doc/.

[2] R. Pike, “System Software Research Is Irrelevant”:
http://herpolhode.com/rob/utah2000.pdf.

[3] R. Stallman, “The Problems of the (Earlier) Plan 9 License”:
http://www.gnu.org/philosophy/plan-nine.html.

[4] A.S. Tannenbaum et al., “Experiences with the Amoeba Distributed
Operating System,” Communications of the ACM, vol. 33, pp. 46–63, Dec.
1990.

[5] Vita Nuova: http://www.vitanuova.com.

12 ; LOG I N : VO L . 3 2 , NO . 5

